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A STABLE HIGH-ORDER METHOD FOR THE HEATED 
CAVITY PROBLEM 

JOSHUA Y. CHOO AND D. H. SCHULTZ 
Department of Mathematical Sciences, University of Wisconsin-Milwaukee, EMS Building, P.O. Box 413, Milwaukee, 

WI 53201, U.S.A. 

SUMMARY 
A fourth-order method, without using extrapolation, is developed for the steady-state solution of a non- 
linear system of three simultaneous partial differential equations for the flow of a fluid in a heated closed 
cavity. The method is a finite difference method which has converged for all Rayleigh numbers Ra of 
physical interest and all Prandtl numbers Pr attempted. The results are presented and compared with some 
of the accurate results available in de Vahl Davis and Jones, Shay and Schultz, and Dennis and Hudson. The 
method used to develop the fourth-order method presented in this paper can be used to develop high-order 
methods for other partial differential equations. The method was developed to be stable without using the 
upwinding technique. 
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INTRODUCTION 

The purpose of this paper is to develop a fourth-order finite difference method to solve the 
Navier-Stokes equations describing the flow of a fluid across the square between two plane 
parallel straight line boundaries. The problem is formulated in terms of flow in a rectangular 
cavity in which the top wall has a temperature T, ,  and the bottom wall a temperature To,  with 

The problem to be considered is formulated as follows. Let SZ be a square region (0, 1) x (0, l), 

On SZ the equations of motion to be satisfied are as follows: 

Ti > To. 

with vertices A, B, C, D, as placed in Figure 1.  

A$= -w, (1) 

(2) 

(3) 

AT + $x Ty - $y T, = 0, 

Am +(l/Pr)(t,bXwy- $,cox)+ Ra T, =0, 

where 9, T and w represent the stream, temperature and vorticity functions. Equations (2) and (3) 
are the non-conservation form. For the case where the surfaces between the hot and cold walls are 
insulated, the boundary conditions to be satisfied are 

$=0 on ABCDA, (4) 

i,bY=O, T=O on AB, ( 5 )  

ll/,=O, T,=O on AD and BC, (6) 
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Figure 1 

$,,=O, T = l  on CD. 
For the case where the temperature varies linearly along the walls separating the hot and cold 
surfaces, the condition T, = 0 is replaced by T= y in equation (6). 

In general, these equations cannot be solved by analytical means. Experimental work has been 
done by Mull and Reicher,' Elder,3 Torrance et aL4 and Eckert and Carlson.s Numerical results 
have been obtained by many authors, including Poots,6 R o ~ e n , ~  Elder,3 de Vahl Davis,* Wilkes 
and Churchill: Rube1 and Landis," Newell and Schmidt," Schultz and Shay and Schultz." 
However, many of the results were obtained for limited values of Ra and Pr, or with lower-order 
approximations. Poots6 used a series expansion, while Rosen' used linear programming tech- 
niques and Newell and Schmidt " used central difference approximations to first derivative terms. 
They all used only a value of Pr = 0.73. Poots and Rosen could not obtain convergence for 
Ra > 10 000.  other^^^^,^,'^ also used central difference approximations, which tend to be unstable 
for small values of Pr. De Vahl Davis' and Wilkes and Churchil19 were successful with P r 2 O . l .  
Elder was able to obtain convergence with P r = 0 0 1 ,  but only for small Ra. 

The problem with central differences is that the resulting coefficient matrix contains off- 
diagonal values that are large relative to the diagonal values. Thus, using iteration methods 
becomes difficult. 

One way to avoid large off-diagonal elements is to use the upwind method developed by 
Green~pan, '~  Schultz' and MacGregor and Emery.14 Schultz obtained convergence for Ra up to 
100000 and Pr as small as 0-00001. However, since the method is only first-order, very small mesh 
sizes are needed to guarantee accuracy. De Vahl Davis and Jones15 have published a comparison 
paper which summarizes results from 36 sources for the case of Pr =0.71, with Ra ranging from 
lo3 to lo6. They include one method which incorporates the second-order difference approxima- 
tion with a fourth-order deferred correction step with mesh refinement and the bench mark 
solution by de Vahl Davis which uses the usual second-order difference approximation with 
a Richardson extrapolation technique. Shay and Schultzl' presented a second-order method and 
a fourth-order method using extrapolation which compared favourably with the results of de 
Vahl Davis and Jones.' Saitoh and Hirosel6 use conventional five-point fourth-order approx- 
imations for the first and second derivatives to obtain a fourth-order method. The disadvantage 
here is that problems arise near the boundary. They also use scaled grid spacing with some new 
transformation function. Dennis and Hudson17 developed a compact nine-point difference 
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scheme which is fourth-order accurate. This method is a two-dimensional version of the methods 
of exponential type which uses the Numerov approximation. They obtained results up to 
Ra = l o 5 .  It would be interesting to see if their accuracy is maintained for Ra= lo6 .  

In this paper we develop a fourth order difference method without using deferred correction or 
extrapolation. The method uses a compact nine-point stencil and is simple to implement, for it 
can use SOR iteration. The method converges for both large Ra and small Pr and can be extended 
to other partial differential equations. The method does not use the upwinding technique. 

: h  
A 

2 0  1 2 3 4 5 

DIFFERENCE EQUATIONS 

On and near the boundary 

Since there is no explicit boundary condition for o, we need to update boundary vorticities. 
Since w = - $xx on AD and BC and w = - JI,, on AB and CD, from equation (l), we approximate 
boundary vorticities by setting 

5 

$xxIo= 1 ai+i, 
i = O  

using the notation in Figure 2. If we expand each ll/i about the point 0 in Figure 2, equate the 
coefficients and solve the linear system, we obtain 

o o =  -$xxlo 

The same formula is used for o = - tjYy on AB and CD. 
For the case Tx=O on the side boundaries, if we use the formula 

Tx 10 = ( - 2 T- 1 - 3 To + 6T1-  T2)/( 6 h) + 0 ( h 3 ) ,  

where the notation in Figure 2 is used, and solve Txlo = 0 for T -  1, we obtain the temperature on 
the outer boundary 

(9) 
We also found that using an inner boundary on the stream equation prevented numerical 

instability. (The term ‘inner boundary’ denotes the set of all points that lie at a distance h from the 
boundary.”) We reason that this is because it forces the derivative condition in (5)-(7) to be 
satisfied. If we use the difference formula l l J l o +  1&bl - 9 1 , h ~ + 2 $ ~ ) / ( , 6 h ) + O ( h ~ ) ,  we 
obtain as was done in Shay and Schu1tz:l’ 

T- 1 =( - 3T0 + 6 T ,  - T2) /2+  0(h4). 

*1 =**/2-$3/9+O(h4) .  (10) 

wall 

Figure 2 
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Or, ifwe use the difference formula $x10=(-25$0+4811/1 -36$2+ 16$3-311/4)/(k12h)+O(h4), 
we obtain 

$1 = 3$2/4 - $3 /3 + $4/16 + O(h5). (1 1) 
Various higher- and lower-order approximations were tried in place of (8H11). However, the 

approximation (8), (9) and (1 1) gave the best overall results. The differences between results for the 
various approximations could be made negligible by using a small enough h. 

In the interior region 

In this section we formulate a stable fourth-order finite difference method that can solve 
equations (1)-(3), with a wide range of Pr and Ra values. Note that each of these equations is 
a special case of the elliptic equation 

Lu=:U,,+u,,+p(x, y )ux+q(x ,  y )uy+r(x ,  y ) u = s ( x ,  Y ) .  

Lu f u,, + uyy + pu, + qu, = s, 

(12) 

(13) 

Since r ( x ,  y)=O in equations (1H3), we may write equation (12) as 

where p = p ( x ,  y) ,  q = q ( x ,  y )  and s = s(x,  y ) .  Note that p =q =O and s = --o in equation (1); 
P = - + ~ ,  q=$, and s=O in equation (2); ~ = - ( l / P r ) + ~ ,  q=(l/Pr)+, and s = - R a T ,  in 
equation (3). 

To set up a finite difference equation for (13), we use Figure 3 which denotes the placement of 
nine points. We denote the point ( x i ,  y j )  as 0, ( x i +  1, y j )  as 1, etc. Thus, we denote u(xi ,  y j ) = u o ,  

Using the above notation we obtain the following approximations for uXx,  u,,, u, and uy at the 
u ( x i + 1 , Y j ) = u 1 , .  . . , u ( x i + l , Y j - 1 ) = u s ,  and that p ( x i , y j ) = p o ,  q(Xi ,y j )=qo and s ( x i , y j ) = s o *  

point ( x i ,  y j ) ,  numbered 0 in Figure 3: 

6 2 5 

7 4 a 
Figure 3 
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Now, substituting (14H17)  into the differential equation (13), we obtain the central difference 
operator Lhk, defined by 

4 

L , , U ~ =  1 aiui=so+Eo[u],  (18) 
i = O  

where E o [ u ]  is the truncation error and 

4 
h 

ao=-- ,  

1 Po a l=T+- ,  h 2h 

1 40 

h 2h’ 
a z = T + -  

1 Po 
h 2h 

1 40 

a3=T--,  

a4=hz-zj; .  

Note that when p ( x ,  y )  or q(x, y )  is large, that is, when Pr is very small, the central coefficient a. 
is small relative to the other coefficients, which is the main cause of the instability of the central 
difference method. 

To obtain a stable fourth-order operator we rewrite the central difference approximation (18) in 
a form that includes the error terms. That is, 

where 

Then, we proceed to convert Eo[u]  into a combination of the lower-order derivatives uxx, u,,, 
u,, u,, uxy, etc., which can be nicely approximated by nine points, as given in Figure 3, with 
a stabilizing effect. From (13), we have 

u,, = - (pux + qu, + u,,) + s. 
Differentiating both sides of this equation with respect to x, we have 

uxxx = - ( P a x  + PXUX + P y x  + q x u y  + u y y x )  + SX’ 

~ x x x x  = - (Puxxx + 2PAX + P X X U X  + 4 x x  u y  + % x u y x  + q u y x x  + uy ,xx )  + sxx. 

and 

Combining these equations, we have 
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Similarly, we have 

UYYYY + 2quYYY = - C(4’ + 2q,)u,, + (44, + 4yy)uy + kPY + PYY)UX 

+ ( P4 + 2Py) u x y  + w x x y  + PUX, + ~ , , y y  1 + qsy + syy . (23) 
Then, substituting (22) and (23) into (21) and assuming that uxy = uyx,  uxxy = uyxx and uxxyy = uyyxx,  
we have 

h’ 
+ ~ ~ P ~ + ~ , + ~ ~ ~ ~ ~ , + ~ ~ P ~ , , , + ~ ~ ~ ~ , + ~ ~ ~ , , ~ ~  i 0  +E ~ P ~ x + ~ ~ y + ~ x x + s y y ~ ~ o  +0(h4) .  

(24) 
Note that the terms (p’ + 2px)uxx and (4’ +2qy)uyy can produce strong central coefficients, when 
they are approximated by (14) and (15). 

Using (24) in (20) and rearranging (20), we obtain - 
L*uo - Eo [u] = so*, 

where 

- h’ 
E o C u l = E o C u l - ~  (P~x+qsy+sxx+syy)lo,  

and 

I 

To approximate E o [ u ] ,  we need to approximate uxy, uxxy, uyyx and uxxyy. So we derive the 
following formulas by Taylor series expansions: 

(28) 

(29) 

1 
uxy 10 =a (u7 -US- u8 + u5 + O(h’ 1 9  

1 
uxxy lo = ~ ( - u7 + 2Uq-u8 +u6-22u’ +us)+ o(h2), 

2h3 

(31) 

Note that we can derive the formula (28) by ~ , ~ ( 0 = ( - ~ ~ 1 4 + u , 1 ~ ) / ( 2 h ) ,  (29) by 
U X X Y ~ O = ( - ~ X , ~ ~ + U X X ~ Z ) / ( ~ ~ ) ,  (30) by Uyy~1o=(-Uyy13 +uyy11)/(2h) and (31) by UXXYY~O’ 

(uxx14-2uxx~~ + uxx12)/h2. Although the order of the error term for each formula is not obvious, it 
is easy to prove second-order accuracy by Taylor expansion. 

1 
h4 

Uxxyy10=-  (u7 -2u4+u8 -2u3 +4u0-2u, +u6-2uz + us)+ o(hz). 

Now, we approximate Eo[u] using the formulas (14H17) and (28H31) 
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where 

4 1  
8 0  = -a+ 6 (P’ + q2 + 2Px + 2qJ0, 

- 1  P0+40  ( P 4 + P Y + 4 X ) I O  
8 5 = s - - -  24 , 

- 1 - P o  +40 + ( P 4  + P Y  +qx)lo 

- 1  --P0-40 - ( P 4 + P Y + 4 X ) I O  

P6=$-  12h 24 5 

87=@- 12h 24 , 

Finally, substituting (32) into (25), we obtain the stable fourth-order operator L: for equation 
(1 3), defined by 

8 
Lh*uo- 1 ai*ui=so*+Eo*[u], 

i = O  
(34) 

where so* is given by (27) and UT = cli- Pi. Also, we see that E,* [ u ] ,  the local truncation error, 
is O(h4). 

Now, we are ready to set up the difference equations for each of the equations (1H3). First, for 
equation (l), where p = 4 = 0 and s = - o, we have the following difference equation: 

where 
20 
6h 

a,*=--?, 

1 
6h 

.*- * -  * -  * -  - a6 - ul - as -7, 
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and 
h2 
12 sg = -wo -- (wxx + W Y Y ) l 0 .  (37) 

Note that if s = - w is harmonic, s$ =so = - wo, since ox, + a,, = 0 in (37). This implies that, in 
such case, the operator L f  is identical to the nine-point formula for the Poisson equation, which 
has O(h6) accuracy as discussed in Reference 19 (p. 195). When s= -w is not harmonic, we can 
approximate sb in (37) with O(h4) accuracy by approximating ox, and wYY with central difference 
formulas (14) and (15). Since the local truncation error E $ [ $ ]  = O(h4), as was the case for E$[u]  
in (34), L f  has fourth-order accuracy in this case. We remark that our fourth-order formula 
(39437) for this particular case is identical to the fourth-order formula for the Poisson equation 
with non-harmonic non-homogeneous terms, derived in Reference 20 (p. 282) in a different way. 

Next, for equation (2), where p = - $,,, 4 = $x and s = 0, we have the following difference 
equation: 

8 

~ f T ~ r  C ~ T T ~ = E , * [ T ] ,  (38) 
i = O  

where 

h 4 Po 1 
a: =6h'+ 3 + 12 ( P 2  + 2Px)lo + 24 ( P P X  + 4PY + P x x  + Pyy)l0 7 

4 Po 1 h 
as =2--+- (P2 + 2PJ lo -24 ( P P X +  4PY + P x x  +PYY)lO> 6h 3h 12 

1 - P 0 - 4 0  + (P4  + P Y +  4x)10 
12h 24 

a:=,+ 
6h 9 

In (39), p = - tjy and 4 = $x, from which we have p x  = -I,$~,,, p y  = - tj,,,, , 4x = $xx and qy = tjxy . We 
also have p x x  + pYy = - $,,,, - $YYy = - (J/ay) (t,bXx + $,,,) = a,, using equation (1) and, similarly, 
4 x x + 4 y y =  - O x .  

For a fully fourth-order difference scheme we need to approximate p =  -$,, and 4 = $ x  with 
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O(h4) accuracy, which is done as follows: 

$Y =( - $4 + $2)/(2h) - h2 $ ~ ~ y / 6  0 (h4) 
=( - $4 $2)/@h) + h 2 ( $ x x y  W,)/6 + O(h4), 

since $ Y Y Y =  - ($ , , ,+w~)  from equation (1). In the similar way, 

$x=(-$3 +$1)/(2h)+h2($,,x+wx)/6+ 0(h4). 
We then approximate $ x x Y ,  $YYx ,  ox and o, with O ( h 2 )  accuracy using (29), (30), (16) and (17), 
respectively. However, note that for p x ,  py, p x x  + pyy, etc. O(hz)  accurate approximations are 
enough, since they are parts of (21) and (26). Also note, that E,X [TI  = O(h4) as was the case for 
E ~ [ U ]  in (34). We, thus, have a fully fourth-order difference scheme for equation (2). 

Finally, for equation (3), where p =  -(l/Pr)$,,, q=(l/Pr)$, and s =  -RUT,,, we have the 
following difference equation: 

8 

Lh*wo- c u * o i = s ; : + E , * [ W ] ,  (40) 
i = O  

where 

20 1 
6h 6 a t  = - 7 - - ( P 2  + 4 2  + 2p, + 2q,)10, 

4 Po 1 h + - + - ( P 2  + 2 P J  lo + 2 ( P P ,  + 4 P y  + Pxx  + P Y J  lo  9 

a t  =Q+%+E k2 + 24Y)IO +- ( P 4 X +  44v + 4 x x +  4YY)lO 3 

uf = ----+- (PZ + 2 P X ) l O  -2 ( P P X  + 4 P y  + P x x  + PYY)lO, 

u*--+- Po + 40 + ( P 4  + P Y  + 4410 

-- 
' - 6 h 2  3h 12 

4 40 1 h 
24 

4 Po 1 h 
6h  3h 12 

1 
' - 6 h 2  12h 24 9 

1 -Po + 4 0 J P 4  + P y + 4 x ) l o  
UZ=-+ 12h 24 6h , 

1 -Po - 40 + (P4 + PY + 4 J l O  
24 

US=-+ 
6h2 12h 9 

+-+-- 1 P o - 4 0  ( P 4 + P Y + 4 X ) l O  

6h 12h 24 

In (41), p= -(l/Pr)+Y and q=(l/Pr)+,, from which we have p x =  -(l/Pr)$xy, py= - ( l /Pr)+~,  
4, = ( l/Pr)$xx and qy = (I/Pr)$,.. . We also have, using equation (I), 

a 
aY 

pxX+py,,= - ( l / ~ r ) ~ $ x x y + $ Y Y y ~ =  -(1/Pr) - ~ ~ x x + $ y Y ~ = ~ ~ / ~ ~ ~ ~ Y .  
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Similarly, we have 

4xx + q y y  = - (1/Pr) wx . 
All these terms are approximated as was done before in (39). 

And so* is, from (27), 

(42) 
h2 
12 so* =so +- ( P s x + q s ,  + sxx + syy)lo 9 

where p =  -(l/Pr)$y, q=(l/Pr)$x and s= -RUT,.  From s=  -RUT,, we have sx= -RaTxy, 
sy = -RUT,, . Then, using equation (2), we have 

a a 
aY aY 

s,, + sYy= - Ra(Txxy + Tyyy)= - Ra - (Txx + Tyy)= - RU - (- $x Ty + $y T x ) ,  

from which it follows that 

sxx + syy = - Ra( - $ x y  T, - $x T y y  + $yy T x  + $ y  Txy) 
= - Ra . Pr( p x  Ty - q Tyy - p y  Tx - p Txy ) .  

Note that so* will be O(h4) accurate when we approximate s = - RaT, with O(h4) accuracy and all 
other terms with O(h2)  accuracy. Therefore, we approximate s =  - RaT, as follows: 

S =  -RUT,= - Ru( - T4 + Tz)/(2h) + Rah2 Tyyy/6 + O(h4) 

= -Ra(-  T4+ ~ z ~ / ~ ~ ~ ~ - ~ ~ ~ 2 ~ ~ x x , + $ x , T y + $ x ~ , , - $ , , ~ x - $ , ~ x , ~ / ~ + ~ ~ ~ 4 ~ ,  

since T,,, = - ( a / a y )  (Txx + t,bx Ty - t,by Tx)  from equation (2). Also, Ed [w] = O(h4) as was the case 
for E d [ u ]  in (34). 

RESULTS AND CONCLUSIONS 

Solutions have been obtained for 1 I Ra I lo6 and Prandtl numbers 0.00001 5 Pr I 10. Results 
have been obtained for the number of grid spacings n in each direction varying from 10 to 120. All 
results were run on the IBM RISC 6000 series model 530. The time for Ra = lo4 and n = 20 was 
15 s, for Ra = lo4 and n = 40 was 3 min 50 s and for Ra = lo4 and n = 80 was 60 min 27 s. We used 
SOR iteration with an absolute convergence test of 0~000002. As in References 12 and 15, the 
average Nusselt number Nu was calculated through the use of a three-point approximation to Ty 
at the cold wall and Simpson’s rule to approximate JA aT/8yIy=o dx. 

Figures 4-1 5 contain level curves for the stream, vorticity and temperature functions. 
Tables I-VI contain results which are compared with those of de Vahl Davis and Jones,15 Shay 

and Schultz,” Dennis and Hudson” and Saitoh and Hirose.16 
Table I compares the results from the first-order method of Schultz,’ the second-order method 

of Shay and Schultzl’ and the current fourth-order method for the case where T = y  on the side 
boundaries. Note that the results from this paper for n = 10 are better than the results for n = 80 in 
Reference 1 and close to the results of n=40 in Reference 12. Note also that the results for the 
fourth-order method are virtually identical for n = 40, 60 and 80, showing excellent convergence. 

Tables I1 and I11 compare the results from the current fourth-order method and the second- 
order method in Reference 12 for the case T, = O  on the side boundaries for various values of h for 
Ra = 10’. Note that the results for n =40 in this paper are close to the extrapolated results from 
Reference 12. For example, we have $,,=9.093 for n=40, while the extrapolated result from 
Reference 12 is 9.089 using n = 40 and n = 80. 
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Table I. Comparison of results from the current fourth-order method and the first-order method in 
Reference 1 and the second-order method in Reference 12. Ra= lo4 and Pr=0.73 and T = y  on the 

side boundaries 

First-order method Second-order method Fourth-order method 
Schultz’ Shay and Schultz‘* Current study 

n $mid ‘%id $mid Wmid $mid %id 

10 7.962 168.0 6.764 139.4 6.243 129-60 
20 7.066 142.0 6,430 130.7 6.324 129.01 
40 6.590 13 5.0 6.357 129.4 6.3430 129.07 
60 n.a. n.a. n.a. n.a. 6.3436 129.08 
80 6.423 132.3 n.a. n.a. 6.3437 129.08 

n.a. =Not available. 

Table 11. Results from the second-order method in Reference 12 for Ra= lo5 and 
Pr = 071 as a function of n. Extrapolated results are obtained from the results with 

n=40 and n=86 

n=20 n=40 n=80 Extrapolated 

Nu 4.943 4.658 4.543 4-505 
$mid 9.3 1 9.24 9.127 9.089 
*ma, 9.83 9.74 9.628 9.591 

Table 111. Results from the current fourth-order method for Ra= lo5 
and Pr = 0.71 as a function of n 

n=20 n=40 n=60 n=80 n=100 

Nu 4.730 4.580 4.542 4529 4.524 
$mid 8.988 9.093 9.113 9.116 9.1 16 
$mar 9.450 9.588 9.6 16 9.6 18 9.617 

Table IV compares the present results for Ra= lo3, lo4, lo5 and lo6 with those in Shay and 
Schultz,” the bench mark solutions in de Vahl Davis,” the compact difference solutions in 
Dennis and and the results from Saitoh and Hirose.I6 The table shows the excellent 
agreement of the present results with those of the bench mark solution for all the values of Ra 
from lo3 to lo6,  with those of Saitoh aad Hirose for Ra= lo4 and Ra= lo6 and with those of the 
compact difference method up to Ra = lo5 . (The results of Saitoh and Hirose are not available for 
Ra = lo3 and Ra = lo6 and those of the compact difference method are not available for Ra = lo6.) 
The difference is well within 0.2% up to Ra=105, except with one result from the compact 
difference scheme, and within 0.8% for Ra = lo6, 

Table V shows the convergence of the current fourth-order method as n increases (h  decreases). 
Note that there is very little change in the results in Table V for n = 40 and 60 for Ra I lo4, and for 
n=80 and 100 for Ra= lo5, showing excellent convergence. For Ra=106 the results are quite 
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Table IV. Comparison of the best results from Shay and Schultz,” the bench mark solutions by 
de Vahl Davis,” the compact difference solutions by Dennis and Hudson’’ and the results from 

Saitoh and Hirose16 (Pr=0.71) 

Reference Ra 103 104 105 106 

Nu n.a. 2.257 4.505 n.a. 
Shay and Schultz” $mid n.a. 5.070 9.089 n.a. 

$max n.a. 5.070 9.591 n.a. 

N u  1.118 2.243 4.519 8.800 

$max n.a. n.a. 9.612 16.750 
de Vahl Davis and Jones” $,id 1’174 5.071 9.111 16.32 

N u  n.a. 2.2424 n.a. 8.7126 
Saitoh and Hirose16 $mid n.a. 5.073 1 n.a. 16,245 

$ma= n.a. n.a. n.a. n.a. 

N u  1.1176 2.2396 4.4959 n.a. 
Dennis and HudsonI7 $,,,id 1.1747 5.0735 9.1126 n.a. 

$max n.a. n.a. n.a. n.a. 

N u  1.116 2243 4.524 8.870 
Present method $mid 1.174 5.073 9.116 16.379 

$max 1.174 5.073 9.617 16.804 
~~~ 

Table V. Comparison of the present fourth-order results as a function of Ra and n (Pr = 0.71) 

n= 10 n=20 n=40 n=60 n=80 
~ ~~ 

N u  1.109 1.112 1.115 1.1 16 1.116 
Ra = lo3 $mid 1.162 1.171 1.173 1.174 1.174 

$ma, 1-162 1.171 1.173 1.174 1.174 

n= 10 n=20 n=40 n=60 n=80 

N u  2.327 2.265 2.245 2.243 2.243 
Ra = lo4 $mid 5.050 5.065 5.074 5.073 5.073 

*max 5.050 5.065 5.074 5.073 5.073 

n=20 n=40 n=60 n=80 n=100 

N u  4.730 4.580 4.542 4.529 4.524 
Ra = lo5 $mid 8.988 9.093 9.113 9.1 16 9.1 16 

$ma, 9.450 9.588 9.616 9.618 9.6 17 

n=80 n=l00  n=120 n=40 n=60 

N u  9.292 9.059 8.95 1 8.898 8.870 
Ra = lo6 $mid 16.069 16.253 16.337 16.368 16.379 

$max 16.485 16.679 16.763 16.793 16.804 
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Table VI. Comparison of results from the current fourth-order 
method and the second-order method in Shay and Schultz12 for 

Ra = 100 and Pr = 0.0001 

Method n $mid Nu 

Second order’ * 80 0.1054 1.00045 
Fourth order 80 0.1033 0.9995 

Table VII. Results from the current fourth-order method for Ra= 100 and Pr= 10 as 
a function of n 

n =  10 n=20 n=40 n=60 n=80 

Nu 09903 0.9958 0.9982 0-9988 0.9980 
$mid 01248 0.1259 0.1 262 0.1263 01263 
%id 3.494 3.508 3.515 3.517 3.517 

close for n = 80,100 and 120. Although the present method showed excellent convergence, a finer 
mesh size was needed for larger Ra to obtain accuracy. This limitation may be overcome by the 
use of mesh refinement or co-ordinate transformation, which is under consideration. 

In addition, a collection of results from 36 sources is summarized in Reference 15. One source 
used a mesh size n = 80 for Ra = lo6, but had difficulties preserving the symmetry of the problem. 
Also, none of the methods in References 15, 16 and 17 indicates success with small Pr.  But the 
present method produced results for a wide range of Pr. Table VI compares the results of the 
present method with those of Shay and Schultz” for Pr=0.0001 and Ra= 100, and Table VII 
shows the results for Pr = 10 and Ra= 100. Our numerical results showed that for Pr>  1 the 
present method converged very nicely. The results did not show any change for Pr > 10, Ra = 100. 

It is the success of the current method with the wide range of Ra, Pr and mesh sizes that 
indicates the potential of this method as an accurate and stable numerical method applicable to 
a wide range of problems. 

REFERENCES 

1. D. H. Schultz, ‘Numerical solution for the flow of a fluid in a heated closed cavity’, Q. J .  Mech. Appl. Math., XXVI, 

2. W. Mull and H. Reicher, Gesundheitsingenieur, 28 (1930). 
3. J. W. Elder, ‘Numerical experiments with free convection in a vertical slot’, J .  Fluid Mech., 24, 823-843 (1966). 
4. K. E. Torrance, L. Orloff and J. A. Rockett, J .  Fluid Mech., 36, 21 (1969). 
5. E. R. G. Eckert and W. 0. Carlson, Znt. J .  Heat Mass Transfer, 2, 106 (1961). 
6. G. Poots, ‘Heat Transfer by laminar free convection in enclosed plane gas layers’, Q. J .  Mech. Appl.  Math., 11,257-273 

7. J. B. Rosen, ‘Approximate solution to transient Navier-Stokes cavity convection problems’, Technical Report No .  32, 

8. G. de Vahl Davis, ‘Laminar natural convection in an enclosed rectangular cavity’, Int. J .  Heat Mass Transfer, 11, 

9. J .  0. Wilkes and S .  W. Churchill, ‘The finite difference computation of natural convection in a rectangular enclosure’, 

(Pt. 2), 173-192 (1973). 

(1958). 

Dept. of Computer Science, University of Wisconsin, 1968. 

1675-1693 (1968). 

AJCHE, 12, 161-166 (1966). 



1332 JOSHUA Y. CHOO AND D. H. SCHULTZ 

10. A. Rube1 and F. Landis, ‘Numerical study of natural convection within rectangular enclosures’, Phys. Fluids 

1 1 .  M. E. Newel1 and F. W. Schmidt, ‘Heat transfer by laminar natural convection within rectangular enclosures’, J. Heat 

12. W. A. Shay and D. H. Schultz, ‘A second-order approximation to natural convection for large Rayleigh numbers and 

13. D. Greenspan, Discrete Numerical Methods in Physics and Engineering, Academic Press, New York, 1974. 
14. R. K. MacGregor and A. F. Emery, ‘Free convection through vertical plane layers-moderate and high Prandtl 

15. G. de Vahl Davis and I. P. Jones, ‘Natural convection in a square cavity: a comparison exercise’, Int.j.  numer. methods 

16. T. Saitoh and K. Hirose, ‘High-accuracy bench mark solutions to natural convection in a square cavity’, Comput. 

17. S. C. R. Dennis and J. D. Hudson, ‘Compact h4 finite-difference approximations to operators of Navier-Stokes type’, 

18. D. Greenspan, Lectures on the Numerical Solution of Linear, Singular and Non-linear Differential Equations, Prentice- 

19. G. E. Forsythe and W. R. Wasow, Finite Difference Methods for Partial Differntial Equations, Wiley, New York, 1960. 
20. J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Wadswords & Books/Cole Advanced 

(Suppl. 11), 208-213 (1969). 

Transfer, 92, 159-168 (1970). 

small Prandtl numbers’, Int. j .  numer. methodsjuids, 5,427-438 (1985). 

number fluids’, J .  Heat Transfer, 91, 391-402 (1969). 

Juids, 3, 227-248 (1983). 

Mech., 4, 417427 (1989). 

J .  Comput. Phys., 85, 3 9 W 1 6  (1989). 

Hall, Englewood Cliffs, New Jersey, 1968. 

Books & Software, California, 1989. 


